New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations
نویسندگان
چکیده
Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (Rz) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.
منابع مشابه
Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically...
متن کاملطراحی، تهیه و ارزیابی پوشش نوین هیدروکسی آپاتیت-تیتانیوم برای اندوایمپلنت دندانی
Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration sim...
متن کاملDevelopment and Analysis of Glass & Ceramic Based Coating Material for Orthopaedic Implants to Increase Better Bonding and Stability
ABSTRACRT: Over a period of time a number of biomaterials have been developed and are used for hard tissue and joint replacement those are Stainless steel (SS-316L), Co-Cr alloy, Titanium (Ti) and its alloy, ceramics and Polymer especially Ultra High Molecular Weight Polyethylene (UHMWPE) and Alumina (Al2O3). These biomaterials for its suitable mechanical properties, nontoxic behavior, and bio-...
متن کاملEffect of surface roughness on coating SiO2-P2O5-CaO-ZrO2 upon Zirconium by Sol-Gel Method
Zirconium and its alloys have many applications in orthopedic medicine and compared to stainless steel, titanium and other metals used in the manufacture of implants has higher strength and corrosion resistance. Research shows that the method of preparation and surface modification before coating process has a significant impact on improving the metal implants among which include the sandblasti...
متن کاملIn Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompa...
متن کامل